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Search for the final period of decay of the 
axisymmetric turbulent wake 

By PETER FREYMUTH 
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(Received 15 January 1974) 

Profiles of mean and fluctuating turbulent velocities and temperatures, of the 
time derivative of velocity and of intermittency have been measured in the 
wake of an unheated as well as a heated sphere in the low Reynolds number 
range 600-2500 at distances 80-1 800 sphere diameters downstream. The wind- 
tunnel experiments exhibit a strong dependence on Reynolds number but they 
do not indicate the attainment of or an approach to the final period of turbulent 
decay which has been explored theoretically by Phillips and by O’Brien. The 
lowest turbulence Reynolds number obtained was R, = 1.4. 

1. Introduction 
Linearization of the equations of fluid motion has a long tradition, especially 

for the axisymmetric wake. It goes back to Stokes (1851) for the laminar wake 
close to a sphere and it has been applied by Oseen (1910) to the far laminar wake 
behind bodies of revolution for higher Reynolds numbers. Linearization of the 
equations of turbulent motion was first introduced by von K k m h  & Howarth 
(1938), for isotropic flow. Batchelor & Townsend (1948) considered this low 
Reynolds number approximation for homogeneous turbulent flow and coined 
the term ‘final period of turbulent decay’. The asymptotic theory of Batchelor & 
Townsend has been extended by Phillips (1955) to the axisymmetric turbulent 
wake and it has been extended further by O’Brien (1973) to include the decay 
of turbulent scalar fields such as temperature. The theory of Saffmann (1967) 
for homogeneous turbulence should also be mentioned although it has not been 
extended to the axisymmetric wake. 

Whereas the theoretical effort concerning the final period of turbulent decay 
is remarkable, experimental investigations into this subject are rare. Batchelor 
& Townsend (1  948) found that grid turbulence a t  turbulence Reynolds numbers 
below 5 tends to support their theory. For the axisymmetric wake behind a disk 
Hwang & Baldwin (1966) mentioned possible attainment of the final period at  a 
turbulence Reynolds number of 30, without, however, specifically comparing 
experimental and theoretical results. Waser (1971) reported an increase in 
spreading rate in the far wake behind a spheroid and he attributed this to the 
attainment of the final period of turbulent decay. Since the spreading of the wake 
in the final period is not aided by turbulent diffusion the spreading rate should 
however decrease with the attainment of the final period rather than increase. 
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There exists a group of flow-visualization experiments for wakes behind spheres 
and disks (adequately referenced by Willmarth, Hawk & Harvey 1964) which 
shows it laminar wake at low Reynolds numbers, a periodic wake at medium 
Reynolds numbers and a turbulent wake at  higher Reynolds numbers. Although 
these experiments are not concerned with the final period they show that experi- 
ments concerning the final period cannot be performed below certain Reynolds 
numbers (of order several hundred). 

Recently Achenbach (1974) found periodicity in the near wake of a sphere a t  
Reynolds numbers as high as 3 x 105, as demonstrated by a peak in the one- 
dimensional power spectra. On the other hand, the numerous power spectra 
obtained by Uberoi & Freymuth (1970) and by Freymuth & Uberoi (1973) in the 
far turbulent wake of a sphere up to Reynolds numbers of 1-5 x lo5 do not ex- 
hibit a peak. It is therefore obvious that any periodicity in the wake close to the 
sphere decays rapidly and no trace of it can be found in the far wake. This 
result had already been obtained by Moller (1938) from flow-visualization ex- 
periments and is completely analogous to the subsequent findings by Roshko 
(1954) for the turbulent wake behind a cylinder. Most recently, De Coster & 
Kibens (1974) seem to have found some persistence of periodicity in the far wake 
behind a disk, indicating that a sphere wake is a more suitable choice for 
exploring the final period of turbulent decay. 

Recently O’Brien (1973) compared some of his theoretical results with wind- 
tunnel measurements in the wake behind a heated sphere by Freymuth & 
Uberoi (1973). He found some qualitative agreement. These measurements were 
however, made at  moderate rather than at  low Reynolds numbers. Therefore 
an extension of these measurements to lower Reynolds numbers would lend a 
comparison more significance. 

The purpose of this investigation is to assess how far the final period €or the 
axisymmetric turbulent wake can be attained under laboratory conditions. 
The assessment will mainly be based on wind-tunnel measurements in the low 
Reynolds number turbulent wake behind a sphere and on a comparison of results 
with the theoretical predictions for the final period. 

2. Experimental arrangement 
The measurements were performed in a variable-speed (1-14 m/s) vertical 

wind tunnel built for our purposes with a test section 20.3 x 20.3 cm wide a t  the 
top and 2 m long (see figure 1). Two of the tunnel walls were adjustable in order 
to create a constant pressure flow in the test section. The turbulence level varied 
with speed and position in the tunnel but was typically of order 

(.‘“)i/U, = 0.06-0.08 yo 

for our measurements, where u’ is the velocity fluctuation in the mean flow 
direction, U, is the free-stream velocity and a bar denotes an average. A turbulent 
axisymmetric wake was created by means of a steel sphere of diameter 

D = 0.397cm. 
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FIGURE 1. Wind-tunnel and sphere for creating an axisymmetric wake. 

The sphere was suspended on a tungsten wire 0.002cm in diameter into the 
upper part of the test section. Glass windows in the tunnel wall allowed the 
focusing of a light beam from a projector lamp on the blackened steel sphere as 
a means of heating the sphere. 

During the wake experiments the sphere executed small irregular pendulum 
motions at an approximate frequency of 0.6 Hz with an amplitude not exceeding 
0.2 sphere diameters. These small and slow motions were not expected to influence 
the wake measurements to any measurable degree since the wake width where 
measurements were performed was of order 15 sphere diameters or more. As a 
check some measurements of velocity fluctuations were performed for which the 
tunnel was started from rest. The tunnel reached equilibrium flow conditions 
within 20s whereas the pendulum motions of the sphere reached their full 
amplitude not before a minute. The wake measurements had already reached 
equilibrium after 20s, showing that the pendulum motions of the sphere had 
no influence. 
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In  addition, spheres of different sizes yielded the same dimensionless profiles 
of temperature and velocity fluctuations at the same Reynolds number, although 
the amplitude of the pendulum motions as well as the spectral content of the 
velocity fluctuations in the wake changed with sphere size. This also shows the 
insignificance of the sphere motions. 

Measurements of axial velocity fluctuations in the wake were made with 
low noise hot-wire equipment described by Freymuth (1967); the mean velocity 
dip in the wake was measured with a hot-wire anemometer having a low drift as 
described by Bank (1972). The free-stream velocity was monitored with a Pitot 
tube connected to a pressure transducer. The temperature and its fluctuations 
were measured by means of a resistance thermometer with a platinum-lO% 
rhodium wire 6.4 x cm thick and fed with a current of 0.25 mA. The wire 
length was 0-03cm. The probes were mounted on a sliding bar that could be 
moved across the tunnel. Various downstream positions were obtained by 
exchanging 46 cm long cover plates for the tunnel with the plate containing the 
movable probes. 

For data processing various filters, root-mean-square voltmeters, amplifiers, 
oscilloscopes and a constant bandwidth wave analyser were available. 

3. Experimental results 
3.1. General remarks concerning the experiments 

The theories by Phillips (1955) and by O’Brien (1973) investigate an axisym- 
metric turbulent wake which is homogeneous in the axial direction and decays 
in time whereas the wake behind a sphere is homogeneous in time and decays 
in the axial direction. Intuitively results for these two different configurations 
can be related to each other by a Galilean transformation; it will be shown in the 
appendix that within the framework of an asymptotic theory of the final period 
this is indeed the case. Therefore results obtained in the sphere wake will be 
checked against the theories by Phillips and by O’Brien. 

For the final period, O’Brien (1973) predicted profiles across the wake of 
the mean temperature excess AT over the ambient value and of the correlations 
v‘T‘ and V’T’~, where T‘ is the temperature fluctuation and v‘ the radial velocity 
fluctuation at a point, which qualitatively agree with the profiles measured by 
Freymuth & Uberoi (1973) at rather high Reynolds numbers. For the mean- 
square temperature fluctuations p, however, a Gaussian profile was predicted 
for the final period whereas measurements at higher Reynolds numbers showed a 
two-maximum profile with a minimum a t  its centre. Analogous discrepancies 
were found for the mean-square axial velocity fluctuation 2 2 .  According to a 
private communication from O’Brien profiles of predicted on the basis of 
Phillips’ (1955) theory are nearly bell shaped whereas measurements by Uberoi 
& Freymuth (1970) showed two maxima. Another discrepancy between final- 
period theory and wake measurements a t  higher Reynolds numbers is the 
presence of intermittency in measurements in the outer parts of the wake and 
its absence in the asymptotic theories. 

- - 



Final period of decay of turbulent wake 817 

The measurements to be reported in this section concentrated on those 
quantities which showed the least agreement with the asymptotic theories and 
thus presumably offered the most sensitive criteria for the attainment of the 
final period. These quantities (profiles of temperature and velocity fluctuations 
across the wake and of the intermittency factor) presumably also exhibited the 
strongest dependence on Reynolds number. Measurements were started at fairly 
high Reynolds numbers; the Reynolds number then was gradually decreased 
to the minimum value for which a fully turbulent, non-periodic wake was still 
obtained. 

Uberoi & Freymuth (1970) showed that for the high Reynolds number turbu- 
lent wake behind a sphere 

RA N Rt = [R(D/x)*]$, ( 1 )  

where 

is the turbulence Reynolds number, R = U, D/v is the Reynolds number of the 
sphere, v is the kinematic viscosity, t is time and 2 is the downstream distance 
from the sphere. The above relation shows that the turbulence Reynolds number 
can be lowered most effectively by lowering R whereas an increase in downstream 
distance will have a rather weak effect. 

The asymptotic theories of the final period predict power laws of decay for 
various turbulent quantities. Since these decay laws contain an arbitrary virtual 
origin at  least a few measured data on decay can always be fitted to any decay 
law by choosing an appropriate virtual origin. Therefore data on decay with 
downstream distance from the sphere will only be reported, and not used to assess 
the attainability of the final period. 

3.2. Phenomenology of the far  wake 

Most measurements of the far wake were made 195 sphere diameters downstream. 
Tracing velocity fluctuations at  this station using an oscilloscope shows the 
following qualitative wake properties. Below R = 305 the wake is laminar, 
between R = 305 and R = 390 the wake is periodic, while above R = 390 the 
wake starts to become turbulent although periodicity can still be recognized. 
Above R = 600 all periodicity has vanished, and the wake has become fully 
turbulent. This can be seen more clearly from the one-dimensional power spectra 
of axial velocity fluctuations [E,(k)/E,(k = O ) ]  and of temperature fluctuations 
[ET(k)/ET(k = O ) ]  at R = 625 shown in figure 2, where k = 2nf/UO is the 
wavenumber. These spectra do not show any prominence of a single frequency 
and the same holds at  higher Reynolds numbers. Furthermore, the spectra 
do not exhibit an inertial subrange at  R = 625. 

3.3. Temperature and velocity Jluctuations 

Figure 3 shows profiles of the intermittency factor yT(r/D) of the temperature 
fluctuations, where r is the radial distance from the wake axis, measured 195 
sphere diameters downstream at three different Reynolds numbers. The inter- 
mittency factor yT of a temperature fluctuation signal as observed by means of a 

5 2  F L M  68 
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storage oscilloscope is the ratio of the time during which the signal is turbulent 
to  the total time. Intermittency measurements based on this simple method 
have been compared by La Rue (1973) with results of more sophisticated methods 
of electronic measurement and found to be in good agreement. With decreasing 
Reynolds number the fully turbulent central region of the wake spreads to its 
outer regions. This brings the wake a t  low Reynolds number closer to the con- 
ditions assumedfor the final period, a t  least as far as intermittency is concerned. 
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FIGURE 3. Profiles of intermittency factor YT. x/D = 195. 
x , R = 625; A, R = 1250; 0,  R = 2500. 
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Figure 4 shows normalized profiles of the temperature fluctuations 

[T’2(r/D)/T’2(0)]4 at x/D = 195 

for three different Reynolds numbers. It can be seen that with decreasing Reynolds 
number the two maxima in the profile become more prominent. This effect is 
opposite to what is needed to approach a bell shape with decreasing Reynolds 
number. The bell shape has been predicted by O’Brien (1973) for the final period. 
This effect did not depend on the degree of heating of the sphere and thus was 
not a buoyancy effect. It was even more dramatic for the fluctuations in axial 
velocity as shown in figure 5 for an entirely unheated sphere. In  this figure a 
profile for the periodic-turbulent regime at R = 485 has also been included, 
showing that in this somewhat coherent flow regime the maxima become de- 
emphasized. Figures 4 and 5 also show the widening of the wake with decreasing 
Reynolds number. 

Even profiles of time derivatives of velocity fluctuations, which usually have 
a rather flat maximum in the wake centre, acquire two maxima a t  low Reynolds 
numbers as is shown in figure 6. 

52-2  
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The two maxima of the temperature and velocity fluctuations become slightly 
enhanced with increasing downstream distance x as can be seen from figure 7, 
where the ratios [Tza,/T'2(r = 0)]4 and [u&&'2 (r = O ) ] +  are shown as functions 
of downstream distance x/D for R = 625. The units of the ordinate are arbitrary 
in order to accommodate the dependence of many different functions on x/D. 
Figure 7 also shows that velocity fluctuations decay in this low Reynolds number 
regime as x-0.8 whereas temperature fluctuations decay as x-l.l. It should 
be mentioned that the measurements of velocity fluctuations reported for 
x/D = 1800 were made in a large horizontal tunnel, and because of the rather 
small signals only show the general trend. Figure 7 also shows the decrease in the 
turbulence Reynolds number R, with downstream distance, with R, = 1-4 at 

-- -- 

x/D = 1800. 
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U ,  = 4.1 x 10-3; 0,  R = 2500, (u'2(0))f/UO = 5.5 x 

- 
77, = 6.01 m/s. 

3.4. Mean velocity and mean temperature 

Figures 4-6 show that the final period of turbulent decay as predicted by the 
asymptotic theories has neither been attained nor is it approached at a turbu- 
lence Reynolds number RA = 3.4. Figure 7 gives no indication that the final 
period might be approached at even lower Reynolds numbers. This introduces 
the question whether the asymptotic state of the final period or whether the 
final period in general has not been reached. The final period in general requires 
that the turbulent transfer of momentum and heat in the wake be small com- 
pared with molecular transfer. Information on the relative magnitudes of these 
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quantities can be obtained from the mean temperature and velocity profiles and 
their decay with downstream distance. 

Figures 8 and 9 show profiles of AT and of the mean velocity defect AU = U, - 
at various Reynolds numbers, where D is the mean velocity. Within the rather 
low measurement accuracy the profiles may be considered bell shaped. Figure 7 
shows the decay of AT and A U and the increase in the half-width bi of the wake 
with increasing x for R = 625. Within measurement accuracy the wake decays 
according to AT N x-3, AU N x-8 and b+ N x*, which are the decay laws found 
at high Reynolds numbers. On the basis of these decay laws it has been shown 
by Freymuth & Uberoi (1973) that the turbulent heat-transfer equation can be 
written as follows: 
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FIGURE 7.  Dependence of various quantities on x/D. Ordinate scale is arbitrary. 
R = 625. n is the slope of the straight lines in this log-log representation. 

where U, = U, (D/x)%, 1, = x*DQ, R, = V,Z,/v = R(D/x)*, 

P = y/v = 1.4 in air. 

= AT ( r  = 0 )  and 

Analogously the turbulent momentum equation reads 
- 
vrur l r  AU 1 dAU/U, -- - _ -  -+-- 
U$ 31, V, R, dr/lc ' 

Assuming bell shapes for the temperature and velocity profiles, i.e. 

(3) 

where K~ and K~ are appropriate constants, it follows by means of (2) that the 
ratio rT of turbulent to molecular heat transfer is given by 

- 
- I - 6 ~ 1  P/R, 
- 

v f T r  
rT = - 

y a(AT)/ar ~ K ~ P / R ,  (4) 
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and using (3) it  follows that the ratio r, of turbulent to molecular momentum 
transfer satisfies 

By means of figures 8 and 9 one finds that K~ = 2-5 and K~ = 3.1 a t  R = 625. 
As an example, the ratios ?“T and r, for x/D = 195 are rt = 4.1 and r, = 4.8; 
for x/D = 1800 one gets T T  = 1.4 and r, = 1.7. The above results show that even 
far downstream the turbulent heat and momentum transfer are still larger than 
the molecular transfer. This means that the final period has not been reached. 
If the final period were reached further downstream the wake would still have to 
grow much wider by molecular diffusion in order to reach its asymptotic state 
(according to the asymptotic concept the initial state of the final period has to 
appear as a line source). 

4. Final remarks 
It has become apparent that our measurements do not approach the asymp- 

totic values for the final period as the Reynolds number is decreased. Rather, 
differences between theory and experiments become more prominent although 
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they might diminish at  even lower Reynolds numbers. Unfortunately the Rey- 
nolds number cannot be decreased further in our experiments since the wake 
then becomes more and more periodic and finally laminar. 

If the final period can be reached at all it seems that a barrier has to be over- 
come first. This can be seen more clearly from figure 10, where the half-width 
of the mean temperature profile is shown as function of Reynolds number. 
Approaching the laminar wake from right to left, a barrier has to be climbed 
before the widening turbulent wake collapses into a narrow laminar wake 
which may be considered a special case of the final period. The expected, direct 
approach path has also been drawn in the figure. 

It should be mentioned that a few body shapes have been tried in addition 
to  a sphere to create a low Reynolds number turbulent wake: a rod hanging 
into the test section of the tunnel and a streamlined body. The lowest turbulence 
Reynolds number in the wake behind’ these bodies was however larger by a 
factor 4 to 6 than that behind the sphere and thus these bodies were unsuited 
for an investigation. 

It should be emphasized that the present investigation does not disprove the 
asymptotic theories. It only shows that it is hardly possible to verify the assump- 
tions set forth in these theories under laboratory conditions. This is especially 
true for the velocity wake. For the temperature wake there exists the possibility 
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of using a fluid with small Prandtl number such as mercury and (owing to its 
high thermal diffusivity) forcing final-period conditions on the temperature 
wake even though the velocity wake has not reached that state. A mercury tunnel 
is not available to this author and formidable measuring problems might exist. 

An axisymmetric body placed into a wind tunnel a t  sufficiently low Reynolds 
numbers creates a laminar wake. If the body is externally forced into random 
motions a pseudo-turbulent flow is generated. Such a flow should exhibit final- 
period behaviour if the random motions are kept sufficiently small. Experiments 
in this direction are under consideration. 

Appendix 
Temporal and spatial decay of turbulence 

Let us consider two axisymmetric wake configurations in the final period one 
of which is homogeneous in the axial direction and decays in time t ,  the other 
being homogeneous in time and decaying in the axial direction x. For the axially 
homogeneous wake the mean flow is zero whereas for the temporally homogeneous 
wake the free-stream velocity Uo in axial direction is large compared with the 
velocity defect of the wake. Asymptotic theories can be developed for both 
types of wake. It will be shown that for the profiles of mean and fluctuating 
temperature both theories are equivalent, i.e., they are connected by a Galilean 
transformation 

x-xo = Uo(t-t,), (6) 
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where to and xo are the virtual origins of the respective wakes. Let us consider 
the mean temperature profiles. The asymptotic theory yields for the temporally 
decaying wake (O'Brien 1973) 

I 
exp [ -4y(trf-t0J 

AT  21 -~ 
Y (t  - to) (7) 

The mean heat-transfer equation for the axially decaying wake reads in the final 
period, when turbulent heat transfer is negligible, 

a(AT)  y a a(AT)  - -- r -  
q r - r a r  ar 9 

which has the well-known asymptotic solution 

Equations (7) and( 9) are connected by the Galilean transformation (6) as predicted. 
Let us next concentrate on the profiles of temperature fluctuations. For the 

temporally decaying wake O'Brien (1973) finds as asymptotic solution 

where the bar denotes an ensemble average. In  order to obtain an analogous 
result for the axially decaying wake one has to find axially decaying elementary 
solutions for the temperature fluctuations and then synthesize the solution for 
the wake. In  this we follow closely the procedure outlined by O'Brien (1973). 

Denote by T ' (x ,  y ,  z ,  t )  some temperature fluctuation in Cartesian co-ordinates 
for which there exists a Fourier transform C(k,, kz, k,, x )  such that 

T' = ~C(k,,Icz,~t,x)exp[i(k,y+kzz+ktt)ldk,dk,dkt, (11)  

where k,, kz and k, are the wavenumbers in the y and z directions and in time. 
The equation for temperature fluctuations in the final period reads 

The corresponding equation for the Fourier transform is 

Assuming an axially decaying solution of the form 

yields for a 

Developing a in a power series around the origin in wavenumber space and 
truncating after second-order terms yields as an elementary solution 
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Go can be considered as constant for asymptotically large x and we obtain as an 
elementary solution for T' 

The temperature fluctuation field in the axially decaying wake will be synthesized 
from solutions of the form (17) such that 

(18) 
For the ensemble average we therefore get 

Assuming homogeneity in time, it follows that C(7) C(T') is a function of 7-7' 

only, or 
C(7) C(7') = h(cr), where a = U0(7 - 7'). 

Introducing y = Uo(t - 7) - (x - xo) yields 

Integration with respect to 7 yields 

For asymptotically large values of x the exponential function 
sign assumes the value one and in this case we-get 

(21) 
under the integral 

The above solution for axial decay is connected to the solution (10) for temporal 
decay by a Galilean transformation, as predicted. 

Let us finally apply the theory of axial decay to calculate profiles of the 
temporal derivative of temperature fluctuations, which has not yet been done. 
Differentiating (1  8) with respect to t ,  squaring and averaging yields 

[ u o ( t - 7 ) - ( ~ - x o ) ] 2 + [ U O ( t - 7 ' ) - ( ( 2 - x o ) ] ~  
4Y@ - ~ o , / ~ o  
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Integration analogous to that for (20) yields 

1 r2 

exp (-2y(x-xo),uo)~ (24 )  

which again is a bell-shaped profile. A similar shape might be expected for the 
derivative of the axial velocity fluctuations. 
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